Crystal Structure

Communications

ISSN 0108-2701

A new inorganic-organic hybrid: tetraimidazolium octamolybdate(VI) containing the

 β-form of the $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ anion
Pedro Gili et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.
© 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

A new inorganic-organic hybrid: tetraimidazolium octamolybdate(VI) containing the β-form of the $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ anion

Pedro Gili, Pedro Núñez,* Pedro Martín-Zarza and Pablo A. Lorenzo-Luis

Departamento de Química Inorgánica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain
Correspondence e-mail: pnunez@ull.es

Received 30 August 2000
Accepted 5 September 2000

Data validation number: IUC0000252
The title compound, $\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}\right)_{4}\left[\beta-\mathrm{Mo}_{8} \mathrm{O}_{26}\right]$, has been prepared from imidazole octamolybdate, $\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}\right)_{4}\left[\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}(\gamma\right.$ $\mathrm{Mo}_{8} \mathrm{O}_{26}$], which was described previously. The $\gamma \rightarrow \beta$ conversion is produced in the presence of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and is reported for the first time in this work. The X-ray structure analysis confirmed the presence of the $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ anion. The structure consists of $\beta-\mathrm{Mo}_{8} \mathrm{O}_{26}$ polyanions and imidazolium cations. These cations are linked to the terminal and bridging O atoms of the anion by hydrogen bonds.

Comment

Polyoxometalates of organic cations present considerable interest as a consequence of their photochemical and photochromic properties in solution as well as in the solid state (Yamase, 1998).

In our investigation of octamolybdates, we have tried to prepare a molybdenum oxide cluster in which the octamolybdate ions are linked to the transition metal atoms. Instead of this, we obtained the β-octamolybdate. An

(I)
imidazole octamolybdate, $\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}\right)_{4}\left[\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\gamma-\mathrm{Mo}_{8} \mathrm{O}_{26}\right)\right]$, containing imidazole coordinatively bound to the Mo atom in $\left[\gamma-\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ has been described previously (Martín-Zarza et al., 1993). When an aqueous solution of this compound is
treated with an aqueous solution of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in a molar ratio Mo:Cu of 1:1, the β-form, $\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}\right)_{4}\left[\beta-\mathrm{Mo}_{8} \mathrm{O}_{26}\right]$, (I), is obtained. The β-form does not contain $\mathrm{N}-$ Mo bonds and the organic cations are linked to terminal and bridging O atoms of the anion through hydrogen bonds.

Mechanisms of interconversion of polyoxometalates have been described (Masters et al., 1980; Kemplerer \& Shum, 1976) but the $\gamma \rightarrow \beta$ conversion in the presence of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ to our knowledge has not been described previously. The structure of the title compound consists of β $\mathrm{Mo}_{8} \mathrm{O}_{26}$ polyanions and organic cations. These anions are constituted by eight MoO_{6} octahedra sharing edges and corners. The octahedra have different $\mathrm{Mo}-\mathrm{O}$ bonds, which can be classified as short terminal [1.690 (3)-1.715 (3) A], intermediate length $[1.761$ (2)-1.959 (2) \AA] and long bonds [1.992 (3)-2.537 (2) Å]. In the idealized octamolybdate anion, there are three different types of MoO_{6} octahedra: (i) octahedra formed by atoms Mo1 and Mo1a, which, being closest to the centroid of the polyanion, are the least distorted; (ii) octahedra formed by atoms Mo3 and Mo3a, which are the most distorted since they are furthest from the centroid; and (iii) octahedra formed by atoms Mo2, Mo2a, Mo4 and Mo4a, which have an intermediate degree of distortion. Comparing the title compound with $\left(\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}\right)_{4}\left[\beta-\mathrm{Mo}_{8} \mathrm{O}_{26}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Fun et al., 1996), it can be seen that there are only slight differences in the Mo-O bond distances. These differences are due to the cation-polyanion interactions.

Finally, hydrogen bonds are observed between terminal and bridging O atoms of the polyanion and the imidazolium cations: $\mathrm{N} 1-\mathrm{H} \cdots \mathrm{O} 52.864(4) \AA, 171.36^{\circ}$; $\mathrm{N} 2-\mathrm{H} \cdots \mathrm{O} 10$ 2.827 (5) $\AA, 167.48^{\circ} ; \mathrm{N} 3-\mathrm{H} \cdots \mathrm{O} 72.819$ (5) $\AA, 152.72^{\circ}$; $\mathrm{N} 4-$ $\mathrm{H} \cdots \mathrm{O} 112.884$ (5) \AA A, 168.93°.

Experimental

$\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}\right)_{4}\left[\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\gamma-\mathrm{Mo}_{8} \mathrm{O}_{26}\right)\right]$ containing the γ-form of the $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ anion was prepared as described previously (MartínZarza et al., 1993). An aqueous solution of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.1141 \mathrm{~g}$, 0.47 mmol) was added to an aqueous solution of $\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}\right)_{4}\left[\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\gamma-\mathrm{Mo}_{8} \mathrm{O}_{26}\right)\right](0.750 \mathrm{~g}, 0.47 \mathrm{mmol})$ in 600 ml of distilled water. The mixture was heated under reflux with stirring for 1 h . When the volume of this solution was reduced to 100 ml , the solution was allowed to stand at room temperature for few days. Colourless crystals of suitable size for X-ray diffraction analysis were obtained of (I). An uncharacterized pale-green precipitate was also obtained.

Crystal data

$\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}\right)_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]$	$Z=1$
$M_{r}=1459.88$	$D_{x}=2.925 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $\alpha \alpha$ radiation
$a=9.3491(15) \AA$	Cell parameters from 25
$b=9.7506(12) \AA$	reflections
$c=10.3634(16) \AA$	$\theta=2.80-30.44^{\circ}$
$\alpha=83.938(11)^{\circ}$	$\mu=3.035 \mathrm{~mm}^{-1}$
$\beta=75.667(12)^{\circ}$	$T=293 \mathrm{~K}$
$\gamma=64.891(10)^{\circ}$	Prism, colourless
$V=828.8(2) \AA^{3}$	$0.3 \times 0.25 \times 0.20 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
ω scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.402, T_{\text {max }}=0.569$
5293 measured reflections
5012 independent reflections
4355 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}	H-atom parameters constrained
$R(F)=0.024$	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1 P)^{2}\right]$
$w R\left(F^{2}\right)=0.076$	where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$S=0.927$	$(\Delta / \sigma)_{\max }=0.001$
5012 reflections	$\Delta \rho_{\max }=0.54 \mathrm{e} \AA^{-3}$
246 parameters	$\Delta \rho_{\min }=-0.98 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

Mo1-O1	2.386 (2)	Mo3-O11	1.715 (3)
Mo1-O2	1.9282 (19)	Mo3-O3 ${ }^{\text {i }}$	1.917 (2)
Mo1-O7	1.761 (2)	Mo4-O1	2.2936 (19)
Mo1-O12	1.690 (3)	Mo4-O2	2.3645 (19)
$\mathrm{Mo} 1-\mathrm{O} 1^{\text {i }}$	2.130 (2)	Mo4-O4	1.893 (3)
Mo1-O5 ${ }^{\text {i }}$	1.9588 (19)	Mo4-O5	2.031 (2)
Mo2-O2	1.992 (2)	Mo4-O6	1.697 (2)
Mo2-O3	1.902 (3)	Mo4-O13	1.701 (3)
Mo2-O5	2.353 (2)	N1-C1	1.312 (5)
Mo2-O8	1.695 (2)	N1-C3	1.370 (5)
Mo2-O10	1.703 (3)	N2-C1	1.321 (6)
$\mathrm{Mo} 2-\mathrm{Ol}^{\text {i }}$	2.313 (2)	N2-C2	1.364 (6)
Mo3-O1	2.537 (2)	N3-C6	1.359 (6)
Mo3-O4	1.913 (2)	N3-C4	1.302 (6)
Mo3-O7	2.2857 (19)	N4-C4	1.305 (6)
Mo3-O9	1.695 (3)	N4-C5	1.343 (6)
$\mathrm{O} 1-\mathrm{Mo} 1-\mathrm{O} 2$	77.34 (8)	O4-Mo3-O11	98.75 (10)
$\mathrm{O} 1-\mathrm{Mo} 1-\mathrm{O} 7$	80.99 (8)	$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Mo} 3-\mathrm{O} 4$	141.93 (9)
$\mathrm{O} 1-\mathrm{Mo} 1-\mathrm{O} 12$	175.13 (11)	O7-Mo3-O9	88.94 (11)
$\mathrm{O} 1-\mathrm{Mo} 1-\mathrm{O} 1^{\mathrm{i}}$	75.26 (7)	O7-Mo3-O11	164.77 (11)
$\mathrm{O} 1-\mathrm{Mo} 1-\mathrm{O}^{\text {i }}$	77.84 (7)	$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Mo} 3-\mathrm{O} 7$	77.29 (8)
$\mathrm{O} 2-\mathrm{Mo} 1-\mathrm{O} 7$	97.00 (9)	O9-Mo3-O11	106.28 (14)
$\mathrm{O} 2-\mathrm{Mo} 1-\mathrm{O} 12$	102.49 (10)	O3 ${ }^{\text {i }}$-Mo3-O9	101.53 (13)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mo} 1-\mathrm{O} 2$	78.68 (8)	$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Mo3}-\mathrm{O} 11$	98.65 (11)
$\mathrm{O} 2-\mathrm{Mo} 1-\mathrm{O}^{\mathrm{i}}$	149.71 (9)	$\mathrm{O} 1-\mathrm{Mo} 4-\mathrm{O} 2$	71.41 (7)
O7-Mo1-O12	103.84 (12)	O1-Mo4-O4	78.66 (8)
$\mathrm{O} 1^{\mathrm{i}}$-Mo1-O7	156.24 (9)	O1-Mo4-O5	73.25 (7)
O5 ${ }^{\text {i }}$-Mo1-O7	95.98 (9)	O1-Mo4-O6	157.61 (10)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mo} 1-\mathrm{O} 12$	99.90 (11)	O1-Mo4-O13	96.03 (11)
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Mo} 1-\mathrm{O} 12$	100.77 (10)	$\mathrm{O} 2-\mathrm{Mo} 4-\mathrm{O} 4$	83.84 (8)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mo} 1-\mathrm{O} 5^{\mathrm{i}}$	78.44 (8)	$\mathrm{O} 2-\mathrm{Mo} 4-\mathrm{O} 5$	70.91 (8)
$\mathrm{O} 2-\mathrm{Mo} 2-\mathrm{O} 3$	146.53 (9)	O2-Mo4-O6	86.46 (10)
$\mathrm{O} 2-\mathrm{Mo} 2-\mathrm{O} 5$	71.79 (8)	O2-Mo4-O13	164.30 (11)
$\mathrm{O} 2-\mathrm{Mo} 2-\mathrm{O} 8$	101.19 (11)	O4-Mo4-O5	146.86 (8)
$\mathrm{O} 2-\mathrm{Mo} 2-\mathrm{O} 10$	97.47 (11)	O4-Mo4-O6	102.90 (12)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mo} 2-\mathrm{O} 2$	73.12 (7)	O4-Mo4-O13	103.32 (12)
O3-Mo2-O5	83.27 (8)	O5-Mo4-O6	96.75 (11)
$\mathrm{O} 3-\mathrm{Mo} 2-\mathrm{O} 8$	99.70 (12)	O5-Mo4-O13	96.83 (12)
$\mathrm{O} 3-\mathrm{Mo} 2-\mathrm{O} 10$	101.67 (12)	O6-Mo4-O13	105.17 (14)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Mo} 2-\mathrm{O} 3$	78.29 (8)	Mo1-O1-Mo3	90.72 (7)
O5-Mo2-O8	87.68 (10)	Mo1-O1-Mo4	97.80 (8)
O5-Mo2-O10	164.47 (9)	$\mathrm{Mo} 1-\mathrm{O} 1-\mathrm{Mo1}{ }^{\text {i }}$	104.74 (8)
$\mathrm{O} 1{ }^{\text {i }}$-Mo2-O5	72.20 (7)	$\mathrm{Mo} 1-\mathrm{O} 1-\mathrm{Mo} 2^{\text {i }}$	97.49 (7)
$\mathrm{O} 8-\mathrm{Mo} 2-\mathrm{O} 10$	105.74 (12)	Mo3-O1-Mo4	85.06 (6)
O1 ${ }^{\text {i }}$ Mo2-O8	159.89 (10)	$\mathrm{Mo1}{ }^{\text {i }}$ - $\mathrm{O} 1-\mathrm{Mo} 3$	164.52 (10)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mo} 2-\mathrm{O} 10$	94.21 (9)	$\mathrm{Mo} 2{ }^{\text {i }}-\mathrm{O} 1-\mathrm{Mo} 3$	85.16 (7)
$\mathrm{O} 1-\mathrm{Mo} 3-\mathrm{O} 4$	72.25 (9)	Mo1 ${ }^{\text {i }}$ - $\mathrm{O} 1-\mathrm{Mo} 4$	93.51 (8)
O1-Mo3-O7	68.85 (7)	Mo2 ${ }^{\text {i }}$ - $\mathrm{O} 1-\mathrm{Mo} 4$	161.93 (9)
O1-Mo3-O9	157.70 (11)	$\mathrm{Mo1} 1^{\mathrm{i}}-\mathrm{O} 1-\mathrm{Mo} 2{ }^{\text {i }}$	91.87 (8)
O1-Mo3-O11	95.92 (11)	$\mathrm{Mo} 1-\mathrm{O} 2-\mathrm{Mo} 2$	109.17 (9)
$\mathrm{O} 1-\mathrm{Mo} 3-\mathrm{O} 3^{\text {i }}$	72.47 (9)	Mo1-O2-Mo4	110.07 (9)
O4-Mo3-O7	77.07 (8)	Mo2-O2-Mo4	105.09 (9)
O4-Mo3-O9	105.64 (13)	$\mathrm{Mo} 2-\mathrm{O} 3-\mathrm{Mo}^{\text {i }}$	118.72 (13)

Mo3-O4-Mo4	$118.44(14)$	$\mathrm{C} 4-\mathrm{N} 4-\mathrm{C} 5$	$109.9(4)$
$\mathrm{Mo} 2-\mathrm{O} 5-\mathrm{Mo} 4$	$104.19(9)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$107.9(3)$
Mo1 1 -O5-Mo2	$109.68(8)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$106.7(4)$
Mo1 1 -O5-Mo4	$107.78(9)$	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$106.7(3)$
Mo1-O7-Mo3	$119.44(11)$	$\mathrm{N} 3-\mathrm{C} 4-\mathrm{N} 4$	$107.6(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$	$109.3(3)$	$\mathrm{N} 4-\mathrm{C} 5-\mathrm{C} 6$	$106.8(4)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	$109.4(4)$	$\mathrm{N} 3-\mathrm{C} 6-\mathrm{C} 5$	$105.8(4)$
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 6$	$109.8(4)$		

Symmetry code: (i) $1-x,-y, 2-z$.

Table 2

Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 7 \cdots \mathrm{O} 5^{\mathrm{i}}$	0.86	2.01	2.867 (3)	172
N2-H8...O10 ${ }^{\text {ii }}$	0.86	1.98	2.825 (5)	168
$\mathrm{N} 3-\mathrm{H} 9 \cdots \mathrm{O} 7^{\text {iii }}$	0.86	2.02	2.817 (4)	153
N4-H10 \cdots O11 $1^{\text {iv }}$	0.86	2.03	2.882 (5)	169
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\text {ii }}$	0.93	2.33	3.036 (4)	132
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\text {v }}$	0.93	2.48	3.355 (5)	158
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 9^{\text {vi }}$	0.93	2.51	3.158 (5)	127
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 13^{\text {iv }}$	0.93	2.52	3.162 (5)	127
Symmetry codes: (i) $x-1, y, z$; (ii) $x, y-1, z$; (iii) $-x,-y, 2-z ; \quad$ (iv) $1-x,-1-y, 2-z$; (v) $1-x,-1-y, 1-z$; (vi) $x, y, z-1$.				

All H atoms were generated geometrically and allowed to ride on their parent C or N atoms. A global $U_{\text {iso }}$ was refined for H atoms attached to C atoms and another one for those attached to N atoms.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4/PC (Harms, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: PLATON (Spek, 1990).

We acknowledge the assistance of the undergraduate student J. J. Rodriguez-Bencomo in the synthesis of the compounds.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/5.2. Enraf-Nonius, Delft, The Netherlands.
Fun, H.-K., Yip, B.-C., Niu, J.-Y. \& You, X.-Z. (1996). Acta Cryst. C52, 506-509. Harms, K. (1996). XCAD4/PC. University of Marburg, Germany.
Kemplerer, W. G. \& Shum, W. (1976). J. Am. Chem. Soc. 98, 8291-8293.
Martín-Zarza, P., Arrieta, J. M., Muñoz-Roca, M. C. \& Gili, P. (1993). J. Chem. Soc. Dalton Trans. pp. 1551-1557.
Masters, A. F., Gheller, S. F., Brownlee, R. T. C., O’Connor, M. J. O. \& Wedd, A. D. (1980). Inorg. Chem. 19, 3866-3868.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Yamase, T. (1998). Chem. Rev. 98, 307-325.

