Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

A new inorganic–organic hybrid: tetraimidazolium octamolybdate(VI) containing the β -form of the $[Mo_8O_{26}]^{4-}$ anion

Pedro Gili et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

© 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

A new inorganic–organic hybrid: tetraimidazolium octamolybdate(VI) containing the β -form of the $[Mo_8O_{26}]^{4-}$ anion

Pedro Gili, Pedro Núñez,* Pedro Martín-Zarza and Pablo A. Lorenzo-Luis

Departamento de Química Inorgánica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain Correspondence e-mail: pnunez@ull.es

Received 30 August 2000 Accepted 5 September 2000

Data validation number: IUC0000252

The title compound, $(C_3H_5N_2)_4[\beta-Mo_8O_{26}]$, has been prepared from imidazole octamolybdate, $(C_3H_5N_2)_4[(C_3H_4N_2)_2(\gamma-Mo_8O_{26})]$, which was described previously. The $\gamma \rightarrow \beta$ conversion is produced in the presence of $Cu(NO_3)_2\cdot 3H_2O$ and is reported for the first time in this work. The X-ray structure analysis confirmed the presence of the $[Mo_8O_{26}]^{4-}$ anion. The structure consists of $\beta-Mo_8O_{26}$ polyanions and imidazolium cations. These cations are linked to the terminal and bridging O atoms of the anion by hydrogen bonds.

Comment

Polyoxometalates of organic cations present considerable interest as a consequence of their photochemical and photochromic properties in solution as well as in the solid state (Yamase, 1998).

In our investigation of octamolybdates, we have tried to prepare a molybdenum oxide cluster in which the octamolybdate ions are linked to the transition metal atoms. Instead of this, we obtained the β -octamolybdate. An

imidazole octamolybdate, $(C_3H_5N_2)_4[(C_3H_4N_2)_2(\gamma-Mo_8O_{26})]$, containing imidazole coordinatively bound to the Mo atom in $[\gamma-Mo_8O_{26}]^{4-}$ has been described previously (Martín-Zarza *et al.*, 1993). When an aqueous solution of this compound is treated with an aqueous solution of Cu(NO₃)₂·3H₂O in a molar ratio Mo:Cu of 1:1, the β -form, (C₃H₅N₂)₄[β -Mo₈O₂₆], (I), is obtained. The β -form does not contain N—Mo bonds and the organic cations are linked to terminal and bridging O atoms of the anion through hydrogen bonds.

Mechanisms of interconversion of polyoxometalates have been described (Masters et al., 1980; Kemplerer & Shum, 1976) but the $\gamma \rightarrow \beta$ conversion in the presence of $Cu(NO_3)_2 \cdot 3H_2O$ to our knowledge has not been described previously. The structure of the title compound consists of β -Mo₈O₂₆ polyanions and organic cations. These anions are constituted by eight MoO₆ octahedra sharing edges and corners. The octahedra have different Mo-O bonds, which can be classified as short terminal [1.690 (3)-1.715 (3) Å], intermediate length [1.761 (2)–1.959 (2) Å] and long bonds [1.992 (3)–2.537 (2) Å]. In the idealized octamolybdate anion, there are three different types of MoO_6 octahedra: (i) octahedra formed by atoms Mo1 and Mo1a, which, being closest to the centroid of the polyanion, are the least distorted; (ii) octahedra formed by atoms Mo3 and Mo3a, which are the most distorted since they are furthest from the centroid; and (iii) octahedra formed by atoms Mo2, Mo2a, Mo4 and Mo4a, which have an intermediate degree of distortion. Comparing the title compound with $(C_6H_{16}N)_4[\beta-Mo_8O_{26}]\cdot 2H_2O$ (Fun et al., 1996), it can be seen that there are only slight differences in the Mo-O bond distances. These differences are due to the cation-polyanion interactions.

Finally, hydrogen bonds are observed between terminal and bridging O atoms of the polyanion and the imidazolium cations: N1-H···O5 2.864 (4) Å, 171.36°; N2-H···O10 2.827 (5) Å, 167.48°; N3-H···O7 2.819 (5) Å, 152.72°; N4-H···O11 2.884 (5) Å, 168.93°.

Experimental

 $(C_3H_5N_2)_4[(C_3H_4N_2)_2(\gamma-Mo_8O_{26})]$ containing the γ -form of the $[Mo_8O_{26}]^{4-}$ anion was prepared as described previously (Martín-Zarza *et al.*, 1993). An aqueous solution of Cu(NO_3)_2·3H_2O (0.1141 g, 0.47 mmol) was added to an aqueous solution of $(C_3H_5N_2)_4[(C_3H_4N_2)_2(\gamma-Mo_8O_{26})]$ (0.750 g, 0.47 mmol) in 600 ml of distilled water. The mixture was heated under reflux with stirring for 1 h. When the volume of this solution was reduced to 100 ml, the solution was allowed to stand at room temperature for few days. Colourless crystals of suitable size for X-ray diffraction analysis were obtained of (I). An uncharacterized pale-green precipitate was also obtained.

Crystal data

$(C_{3}H_{5}N_{2})_{4}[Mo_{8}O_{26}]$	Z = 1
$M_r = 1459.88$	$D_x = 2.925 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 9.3491 (15) Å	Cell parameters from 25
b = 9.7506 (12) Å	reflections
c = 10.3634 (16) Å	$\theta = 2.80 - 30.44^{\circ}$
$\alpha = 83.938 \ (11)^{\circ}$	$\mu = 3.035 \text{ mm}^{-1}$
$\beta = 75.667 \ (12)^{\circ}$	T = 293 K
$\gamma = 64.891 \ (10)^{\circ}$	Prism, colourless
$V = 828.8 (2) \text{ Å}^3$	$0.3 \times 0.25 \times 0.20 \text{ mm}$

electronic papers

Data collection

Enraf-Nonius CAD-4 diffractometer ω scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.402, T_{max} = 0.569$ 5293 measured reflections 5012 independent reflections 4355 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 R(F) = 0.024 $wR(F^2) = 0.076$ S = 0.9275012 reflections 246 parameters

Table 1

Selected geometric parameters (Å, °).

Mo1-O1	2.386 (2)	Mo3-O11	1.715 (3)
Mo1-O2	1.9282 (19)	Mo3-O3 ⁱ	1.917 (2)
Mo1-O7	1.761 (2)	Mo4-O1	2.2936 (19)
Mo1-O12	1.690 (3)	Mo4-O2	2.3645 (19)
Mo1-O1 ⁱ	2.130 (2)	Mo4-O4	1.893 (3)
Mo1-O5 ⁱ	1.9588 (19)	Mo4-O5	2.031 (2)
Mo2-O2	1.992 (2)	Mo4-O6	1.697 (2)
Mo2-O3	1.902 (3)	Mo4-O13	1.701 (3)
Mo2-O5	2.353 (2)	N1-C1	1.312 (5)
Mo2-O8	1.695 (2)	N1-C3	1.370 (5)
Mo2-O10	1.703 (3)	N2-C1	1.321 (6)
Mo2-O1 ⁱ	2.313 (2)	N2-C2	1.364 (6)
Mo3-O1	2.537 (2)	N3-C6	1.359 (6)
Mo3-O4	1.913 (2)	N3-C4	1.302 (6)
Mo3-07	2.2857 (19)	N4-C4	1.305 (6)
Mo3-O9	1.695 (3)	N4-C5	1.343 (6)
			()
O1-Mo1-O2	77.34 (8)	O4-Mo3-O11	98.75 (10)
O1-Mo1-O7	80.99 (8)	O3 ⁱ -Mo3-O4	141.93 (9)
O1-Mo1-O12	175.13 (11)	O7-Mo3-O9	88.94 (11)
O1-Mo1-O1 ⁱ	75.26(7)	O7-Mo3-O11	164.77 (11)
O1-Mo1-O5 ⁱ	77.84 (7)	O3 ⁱ -Mo3-O7	77.29 (8)
O2-Mo1-O7	97.00 (9)	O9-Mo3-O11	106.28 (14)
O2-Mo1-O12	102.49 (10)	O3 ⁱ -Mo3-O9	101.53 (13)
O1 ⁱ -Mo1-O2	78.68 (8)	O3 ⁱ -Mo3-O11	98.65 (11)
O2-Mo1-O5 ⁱ	149.71 (9)	O1-Mo4-O2	71.41 (7)
O7-Mo1-O12	103.84 (12)	O1-Mo4-O4	78.66 (8)
O1 ⁱ -Mo1-O7	156.24 (9)	O1-Mo4-O5	73.25 (7)
O5 ⁱ -Mo1-O7	95.98 (9)	O1-Mo4-O6	157.61 (10)
$O1^{i} - Mo1 - O12$	99.90 (11)	O1-Mo4-O13	96.03 (11)
O5 ⁱ -Mo1-O12	100.77 (10)	O2-Mo4-O4	83.84 (8)
$O1^i - Mo1 - O5^i$	78.44 (8)	O2-Mo4-O5	70.91 (8)
O2-Mo2-O3	146.53 (9)	O2-Mo4-O6	86.46 (10)
O2 - Mo2 - O5	71.79 (8)	O2 - Mo4 - O13	164.30 (11)
$02 - M_02 - 08$	101 19 (11)	$04 - M_04 - 05$	146 86 (8)
$O_2 - M_0 - O_{10}$	97.47 (11)	$04 - M_04 - 06$	102.90 (12)
$01^{i} - M_{0}^{2} - 0^{2}$	73 12 (7)	$04 - M_04 - 013$	103.32(12)
03 - Mo2 - 05	83.27 (8)	05 - M04 - 06	96.75 (11)
03 - Mo2 - 08	99.70(12)	$05 - M_0 4 - 013$	96.83 (12)
03 - Mo2 - 010	101.67(12)	$06 - M_04 - 013$	10517(14)
$01^{i} - Mo2 - 03$	78 29 (8)	$M_{01} - O_{1} - M_{03}$	90.72 (7)
$05 - M_0^2 - 08$	87.68 (10)	Mo1 = O1 = Mo3	97.80 (8)
05 - Mo2 - 010	164 47 (9)	$Mo1 - O1 - Mo1^{i}$	104 74 (8)
$0.01^{i} - M_{0}^{2} - 0.05$	72.20(7)	$Mo1 = O1 = Mo2^{i}$	97.49 (7)
$08 - M_0^2 - 010$	105.74(12)	Mo3 = 01 = Mo2	85.06 (6)
$00^{1} - M_0^2 - 08$	159.89 (10)	$Mo1^{i} = O1 = Mo3$	164.52(10)
$01^{i} - M_{0}2 - 00^{i}$	94 21 (9)	$Mo^{2^{i}} - O^{1} - Mo^{3}$	85 16 (7)
01 - M02 - 010 01 - M03 - 04	72.25(9)	$Mo1^{i} - O1 - Mo3$	93 51 (8)
$01 - M_{03} = 07$	68.85 (7)	$Mo2^{i} = O1 = Mo4$	161 93 (0)
$01 - M_{03} - 09$	157.70(11)	$M_01^i = 01 = M_02^i$	91 87 (8)
$01 - M_0 - 011$	95 92 (11)	$M_{01} = 0^{-1} = M_{02}$	100 17 (0)
$01 - M_{03} - 03^{i}$	72 47 (0)	Mo1 = O2 = Mo2	109.17(9) 110.07(0)
$04 - M_{03} = 07$	77.07.(9)	$M_0^2 = 0^2 - M_0^4$	105.00 (0)
$04 M_{0}^{2} 00$	105.64 (12)	$M_{02} = 02 = M_{02}^{i}$	110.07 (9)
04-1003-09	103.04 (13)	102-05-1005	110.72 (13)

$R_{\rm int} = 0.018$
$\theta_{\rm max} = 30.40^{\circ}$
$h = 0 \rightarrow 13$
$k = -12 \rightarrow 13$
$l = -14 \rightarrow 14$
3 standard reflections
frequency: 120 min
intensity decay: none

H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.54 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.98 \ {\rm e} \ {\rm \AA}^{-3}$

Mo3-O4-Mo4	118.44 (14)	C4-N4-C5	109.9 (4)
Mo2-O5-Mo4	104.19 (9)	N1 - C1 - N2	107.9 (3)
Mo1 ⁱ -O5-Mo2	109.68 (8)	N2-C2-C3	106.7 (4)
Mo1 ⁱ -O5-Mo4	107.78 (9)	N1-C3-C2	106.7 (3)
Mo1-O7-Mo3	119.44 (11)	N3-C4-N4	107.6 (4)
C1-N1-C3	109.3 (3)	N4-C5-C6	106.8 (4)
C1-N2-C2	109.4 (4)	N3-C6-C5	105.8 (4)
C4-N3-C6	109.8 (4)		

Symmetry code: (i) 1 - x, -y, 2 - z.

Table 2	
Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1 - H7 \cdots O5^i$	0.86	2.01	2.867 (3)	172
$N2-H8\cdots O10^{ii}$	0.86	1.98	2.825 (5)	168
N3−H9···O7 ⁱⁱⁱ	0.86	2.02	2.817 (4)	153
$N4-H10\cdots O11^{iv}$	0.86	2.03	2.882 (5)	169
$C1-H1\cdots O12^{ii}$	0.93	2.33	3.036 (4)	132
$C2-H2\cdots O6^{v}$	0.93	2.48	3.355 (5)	158
$C3-H3\cdots O9^{vi}$	0.93	2.51	3.158 (5)	127
$C4-H4\cdots O13^{iv}$	0.93	2.52	3.162 (5)	127

Symmetry codes: (i) x - 1, y, z; (ii) x, y - 1, z; (iii) -x, -y, 2 - z; (iv) 1 - x, -1 - y, 2 - z; (v) 1 - x, -1 - y, 1 - z; (vi) x, y, z - 1.

All H atoms were generated geometrically and allowed to ride on their parent C or N atoms. A global U_{iso} was refined for H atoms attached to C atoms and another one for those attached to N atoms.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4/PC* (Harms, 1996); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); software used to prepare material for publication: *PLATON* (Spek, 1990).

We acknowledge the assistance of the undergraduate student J. J. Rodriguez-Bencomo in the synthesis of the compounds.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/5.2. Enraf-Nonius, Delft, The Netherlands.

Fun, H.-K., Yip, B.-C., Niu, J.-Y. & You, X.-Z. (1996). Acta Cryst. C52, 506–509. Harms, K. (1996). XCAD4/PC. University of Marburg, Germany.

- Kemplerer, W. G. & Shum, W. (1976). J. Am. Chem. Soc. 98, 8291-8293.
- Martín-Zarza, P., Arrieta, J. M., Muñoz-Roca, M. C. & Gili, P. (1993). J. Chem. Soc. Dalton Trans. pp. 1551–1557.

Masters, A. F., Gheller, S. F., Brownlee, R. T. C., O'Connor, M. J. O. & Wedd, A. D. (1980). *Inorg. Chem.* 19, 3866–3868.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (1990). Acta Cryst. A46, C-34.

Yamase, T. (1998). Chem. Rev. 98, 307-325.